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Abstract

The nuclear receptor (NR) superfamily is ligand-dependent transcriptional factors that mediate gene expression in humans

and wildlife. These receptor-mediated effects are stimulated and/or inhibited by endogenous cognate ligands for each NR but

also by exogenous substances including natural products and synthetic chemicals. The NRs and their ligands have thus attracted

broad scientific interest, particularly in the pharmaceutical industry for drug discovery and in toxicology and environmental

science for risk assessment as, for example, pertaining to endocrine disrupting chemicals. Besides advancing our fundamental

knowledge of NR biology, these scientific efforts are generating relevant biological data on NR ligands particularly with

respect to their binding affinities, receptor specificities, and agonist versus antagonist activities. These data from diverse

sources serve as input for construction of quantitative structure–activity relationship (QSAR) models and related approaches

that employ statistical regression techniques to correlate variations between the biological activities of NR ligands and their

calculated structural and physicochemical properties. In this review, we attempt to summarize the substantial body of work in

the published literature related to QSAR models for NR ligands, with special emphasis on different computational approaches

and specific applications. Special attention is placed on the estrogen receptor, for which the greatest amount of relevant

information is known at present. We also describe efforts to create ‘benchmark’ sets of high-quality biological data on NR

ligands that may serve as resources for building statistically robust and predictive QSAR models.
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1. Introduction

Nuclear receptors (NRs) are a superfamily of

ligand-dependent transcription factors that mediate

the effects of hormones and other endogenous lig-

ands to regulate the expression of specific genes.

Members of the NR superfamily, which may number
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in the hundreds, include receptors for various steroid

hormones (estrogen, androgen, progesterone, and

several corticosteroids), retinoic acid (the retinoic

acid receptor a, b, and g isoforms, and the retinoid X

receptor a, b, and g isoforms), thyroid hormones,

vitamin D, and dietary lipids (the peroxisome

proliferator activated receptor (PPAR) a, b, and g

isoforms). A large number of ‘orphan’ NRs have also

been identified whose cognate ligands are still

unknown [1]. Diminished or excessive production of

a particular hormone or target-cell insensitivity to a

hormone is among the major problems related to

human endocrine dysfunction diseases [2].

The NRs contain five functional domains from the

N to C termini, designated A/B, C, D, E, and F (Fig. 1).

While the C domain containing the DNA-binding

domain is the region of highest sequence conservation

in the superfamily, there is considerable variability

across receptors in the A/B and D domain [3]. The E

domain, known as the ligand-binding domain (LBD),

is the sequence specifying ligand binding. Despite the

low sequence homology (as low as 20%) between the

LBDs of different NRs, analysis of crystal structure

data [4–14] has revealed a remarkable similarity in

their three-dimensional (3D) structures. By virtue of

its significance for ligand specificity and receptor-

mediated effects among the NRs, the LBD has

attracted the greatest amount of scientific curiosity

and attention.

Adopting the generally accepted depiction of the

ligand–receptor interaction in NRs, the LBD can be

envisaged as a molecular switch. Depending on

whether the bound ligand is an agonist or antagonist,

the C-terminal helix 12 (H12) is found in either one of

two orientations. In its agonist-bound conformation,

H12 serves as a ‘lid’ to close the ligand-binding

pocket [15]. Thus, the activation function-2 (AF-2,

located at the C-terminal of the LBD) [16] is

brought into position to recruit co-activators and/or

co-repressors which bind to facilitate transcriptional

initiation [17]. In its antagonist-bound conformation,

however, H12 is positioned in a different orientation

such that the transcriptional machinery remains de-

activated. The preservation of the molecular switch,

despite the low sequence homology in the LBD across

NR members, argues that agonist/antagonist discrimi-

nation is critically important for receptor functioning.

There are a large number of ligands, diverse in both

structure and source, which act through the NRs to

produce receptor-mediated effects. Steroid hormones

play a vital role in a wide variety of essential

physiological processes including cell growth, sexual

development, maintenance of salt balance, and sugar

metabolism [18]. Estrogens elicit many cellular

responses in target tissues and can exert both positive

and negative effects on health and reproductive

function. For example, estrogens are used beneficially

for fertility control (oral contraception) and for relief

of menopausal symptoms (estrogen replacement

therapy). The adverse developmental effects of

diethylstilbestrol (DES) demonstrate human fetal

sensitivity to estrogenic chemicals. Progesterone is a

hormone that functions to help regulate the menstrual

cycle and plays a significant role in pregnancy.

Progesterone has also been reported to both stimulate

and inhibit the growth of experimental mammary

tumors, dependent upon the dose and experimental

model [19]. Retinoids have received considerable

attention from their use in the therapeutic treatment of

different diseases (e.g. cancer) and from their critical

role in embryonic and fetal development [20,21].

It has also been recognized that numerous synthetic

chemicals are capable of interfering with the normal

signaling pathway by interacting with NRs [22].

Environmental chemicals, such as pesticides, herbi-

cides, and plasticizers are capable of activating the

PPAR leading to liver dysfunction and hepatoma.

Numerous findings also show that certain

Fig. 1. Functional domains of NRs.
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environmental chemicals have the ability to disrupt

the endocrine system by mimicking the functions of

natural hormones. These endocrine disrupting chemi-

cals (EDCs) may exert adverse effects on humans and

wildlife [23].

Quantitative structure – activity relationship

(QSAR) models have proven their utility, from both

the pharmaceutical and toxicological perspectives, for

identification of chemicals that might interact with

NRs. While their primary function in the pharmaceu-

tical enterprise is lead discovery and optimization,

QSAR models have played an essential role in

toxicology as a priority setting tool for risk assess-

ment. For example, public heath concern about EDCs

resulted in Federal legislation mandating the environ-

mental protection agency (EPA) to regulate potential

EDCs in drinking water and food additives [24].

Under this requirement, up to 87,000 existing

chemicals will be experimentally evaluated for their

potential to disrupt activities in the estrogen, andro-

gen, and thyroid hormone systems [25]. In an attempt

to reduce the time and expense in this prodigious task

of screening and testing such a large number of

chemicals, QSAR models are being developed to

prioritize chemicals as to their endocrine disrupting

potential for further experimental evaluation [26].

QSAR models offer numerous additional benefits

beyond prediction [27], such as: (1) leveraging

existing structure–activity data; (2) providing insights

into mechanisms of action (e.g. agonist versus

antagonist) or identifying alternative mechanisms

(e.g. metabolism); (3) identifying key structural

features associated with high/low activity; (4)

suggesting new design strategies and synthetic

targets; (5) narrowing the dose range for a planned

assay; (6) assisting in generation of new hypotheses to

guide further research; (7) revealing chemicals that

deviate from the QSAR model and, therefore, from

the presumed biological model.

Basically, QSAR models employ quantitative

regression methods to correlate, and rationalize,

variations in the biological activity of a structurally

related series of chemicals with variations in their

molecular structures as encoded in pre-selected

quantities commonly known as molecular descriptors.

The fundamental assumption inherent in every QSAR

model is that a chemical’s physical and chemical

properties and its biological activities are predicated

by its structure [28].

The number of QSAR models derived from NR-

ligand biological data is already fairly sizable. The list

is surely to expand in coming years as our knowledge

and appreciation of the critical role of NRs in

biological function continue to grow. Reflecting the

availability of relevant biological data, the largest

number of QSAR models in the published literature is

associated with estrogen receptor (ER) binding. A few

papers have reported QSAR models for androgens,

progesterone, retinoic acids and thyroid hormone. In

this review, we will first provide an overview of

various QSAR approaches applied for the NR super-

family. We will then proceed to survey the QSAR

models available for ER with emphasis on two

separate but related applications: structural character-

ization and risk assessment. Section 4 will summarize

QSAR models for other members of the NRs, such as

the androgen receptor (AR) and the progesterone

receptor (PR). Section 5 will discuss ongoing efforts to

assemble high-quality ‘benchmark’ sets of biological

data associated with ligands for ER and other NRs that

can be used to develop robust and predictive QSAR

models for applications in risk assessment. These

efforts may also provide a rich source of data for use as

standards in the design, testing, and comparison of

different QSAR models and approaches.

2. QSAR models associated with nuclear receptors

The NR superfamily has been the subject of

various QSAR models and modeling approaches, of

which comparative molecular field analysis (CoMFA)

is predominant [29–34]. To construct a CoMFA

model [35], a collection of chemicals with known

activities (i.e. the training set) are first aligned

together usually employing structural similarity as

the basis for alignment. The aligned molecules are

then embedded in a 3D grid, after which the steric and

electrostatic fields are computed for each chemical at

every grid point surrounding the molecules. The

variations in these steric/electrostatic fields are then

correlated with biological activity using partial least-

squares (PLS) regression.

A major objective in applying CoMFA is to

identify key structural and/or steric–electrostatic
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characteristics shared by all or most of the ligands

under study. An attractive feature of CoMFA is its

capability to render a color-coded 3D contour map

depicting regions in space around molecules where

differences in steric and electrostatic fields are most

strongly correlated with differences in activity. These

3D contour maps provide visual clues for modifying

ligand structure so to either enhance or diminish

activity. (Whereas enhanced activity of a lead

chemical is sought in drug discovery, diminished

activity of a toxicant is desired in toxicology.) One

can also use these maps to infer critical features of the

receptor-binding pocket based on arguments of

ligand–receptor complementarily. This information

is essential when the crystal structure of the receptor is

unknown or not available. Even when the receptor

crystal structure is available, CoMFA provides an

additional source of information about the receptor

from the perspective of the ligands. It should be noted

that the crystal structure of a ligand– receptor

complex provides but a single, albeit low-energy,

snapshot of the actual dynamic biological system.

Structural information derived from this crystal

structure pertains only to the bound ligand in the

strictest sense and certainly not to the wide structural

diversity of ligands that bind to certain NRs, such as

ER [36] and the orphan pregnane xenobiotic receptor

(PXR) [37,38].

Besides CoMFA and related 3D-QSAR

approaches, other QSAR approaches have been

applied to the NRs and their ligands. So-called

classical QSAR models attempt to correlate the

biological activity of a series of ligands with their

associated physicochemical properties or features that

are usually calculated but sometimes derived from

experimental measurements. A series of Hansch-type

QSAR models have been developed separately for

several chemical classes that bind to the ER [39,40].

These models considered only a few descriptors and

found that indicators for the presence or absence of

oxygen atoms, molar refraction (MR) and the

Hammett s parameter correlated significantly with

activity. In fact, a comprehensive list of descriptors

available to build classical QSAR models would

number in the hundreds and perhaps thou-

sands. Commercially available molecular modeling

programs often include statistical tools to help

in choosing which descriptors best encode for

structure–activity variation. For example, a genetic

function approximation (GFA) approach developed

by Rogers and Hopfinger [41] and implemented in

Cerius2 (http://www.msi.com) is a popular genetic

algorithm-based statistical approach that is now

widely used in QSAR model development [42].

Hologram QSAR (HQSAR), a novel fragment-

based QSAR approach, was recently introduced by

Tripos, Inc. (http://www.tripos.com). In HQSAR,

each molecule in the dataset is divided into structural

fragments that are then counted in bins of a fixed

length array to form a molecular hologram. HQSAR

has several attributes, including speed, reproducibil-

ity, and ease of use, that suggest its potential utility for

prioritizing large numbers of chemicals for sub-

sequent testing [34]. Tong et al. compared the

performance of HQSAR with CoMFA for several

ER datasets [34,43]. Although HQSAR and CoMFA

achieved comparable results for two smaller datasets,

CoMFA produced better results for a diverse dataset

as judged by both internal and external validation.

Zheng and Tropsha [44] reported an automated

variable selection QSAR method that is based on the

k-Nearest Neighbor (kNN) principle. In this kNN-

QSAR method, a chemical’s activity is estimated as

the mean activity value of its k nearest neighbors

based on Euclidean distance in a multidimensional

descriptor coordinate system. The method was tested

on 58 ER ligands and demonstrated its effectiveness

and generality.

Pharmacophore-based screening has become a

common tool in the field of computer-aided drug

design. A new method of rapid pharmacophore

fingerprinting has been developed [45]; these finger-

prints are used as descriptors to construct a QSAR

model using PLS regression. Examples are given

using the datasets reported by Kuiper et al. for both

ER-a and ER-b [46]. The results are compared with

previously published QSAR models for the same data

to demonstrate the superiority of a full 3D, confor-

mationally flexible approach. The QSAR model can

be readily interpreted in structural/chemical terms.

Information extracted from molecular spectra has

recently been applied to develop QSAR models

associated with NR ligands [47]. The binding

affinities of 45 progestagens (progesterone mimics)

have been quantitatively modeled using the compara-

tive spectra analysis (CoSA) approach, in which
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experimental 1H-NMR, mass, simulated 13C NMR

and IR spectra were used separately or in combination

to predict PR binding. The results are comparable

with CoMFA, strongly supporting the use of spectro-

scopic fields in QSAR studies [48,49].

QSAR methods that incorporate information on

ligand–receptor interactions have been investigated

by a number of groups. The receptor coordinates are

required either from crystal structure data or from

homology modeling analysis, as is energy minimiz-

ation of the bound ligand – receptor complex.

Methods, such as VALIDATE [50], COMBINE [51]

and free energy perturbation (FEP) [52] are the

examples to use ligand–receptor interaction for

QSAR models. As demonstrated in a recent study

by Jayatilleke et al. [53], ligand-based and receptor-

based approaches are highly compatible and yield

more highly predictive QSAR models when employed

in tandem. The utmost goal, whether in drug

discovery or in computational toxicology, is to

develop and apply QSAR models that provide the

highest statistical quality and predictive ability. This

can be achieved by using the full extent of information

provided for the biological system under study. For

some NRs, this information may include knowledge

of the crystal structure of the receptor and/or

receptor–ligand binary complex. Recently, Oosten-

brink et al. [54] reported a single-step perturbation

method allowing the calculation in a single simulation

of relative free energy for a large number of

polyaromatic hydrocarbons (PAHs) binding to the

ER-a subtype. Agreement between the calculated and

experimental results had a maximum deviation of

only 3.3 kJ/mol. Moreover, this method is between

four and six times less computer-time intensive as the

thermodynamic integration method.

Predicting the receptor-binding affinity of bio-

molecules is one of the major challenges in

computational approaches to drug design. Basically,

two strategies are used: indirect ligand-based

approaches (e.g. CoMFA, CoMSIA, CoMMA) and

the direct receptor-based approach. Sippl [55,56]

combined these two approaches and tested them on

a set of ER ligands. The binding conformation was

determined using an automated docking program

[57], which was further verified through comparison

with the crystal structures. The ligand

alignments obtained from the docking simulations

were subsequently taken as the basis for a

comparative field analysis using the GRID/GOLPE

program [58]. The model constructed on the basis of

the receptor structure supplies a better explanation

of the binding activity.

3. QSAR models for estrogen receptor

Estrogens are widely prescribed in menopausal

women for hormone replacement therapy to main-

tain bone mineral density and preserve cardiovas-

cular health. Anti-estrogens, such as raloxifene

[59,60] and tamoxifen, are being studied as agents

to prevent breast cancer in woman at high risk.

Estrogens regulate the expression of specific

genes and the secretion of certain hormones, and

coordinate diverse processes, such as cell prolifer-

ation, cell differentiation and tissue organization

through pleiotropic actions. Once estrogens reach

the bloodstream, they may remain free or bind to

serum estrogen-binding proteins like a-fetoprotein

(AFP) in rodents [61,62] or sex hormone-binding

globulin (SHBG) in humans [62]. Only the free

(unbound) hormone is able to diffuse into the target

cells, where it binds to the ER to form a hormone–

receptor complex. The prevailing model suggests

that this complex then interacts with an estrogen

response element (ERE) of target genes and

activate the transcriptional machinery [63,64].

Fang et al. [65] found a strong linear correlation for

ER-binding affinities among a diverse group of

chemicals assayed with ER from rat uterine cytosol

and human ER-a. Furthermore, the ER-binding data

also correlated strongly with the results from assays

measuring estrogenicity using a downstream event,

i.e. a yeast-based reporter gene assay and MCF-7 cell

proliferation assay. These findings demonstrate that

ER binding is the major determinant for ER-mediated

effects. Therefore, modeling ER binding is essential

for understanding the structural requirements for

potential drug candidates and for identifying potential

EDCs. Thus far, most QSAR models for ER binding

have focused on (1) structural characterization of

ligands to identify those features required for binding;

and (2) identification of estrogenic EDCs for the

purpose of priority setting.
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3.1. Structural characterization

In the past few years, a number of QSAR models

have been developed for ligand binding to the ER

[29–34,43,44,66–68]. Most of these ER models were

constructed using CoMFA [35].

The ER subfamily is comprised of ER-a and ER-b,

which share ,55% sequence identity in their LBDs

and ,72% identity (26 of 36 residues) within the

ligand-binding pocket. The expression patterns of

these two ER isoforms across tissues as well as their

ligand-binding patterns were found to exhibit notable

differences [46]. Tong et al. [33] employed CoMFA to

identify and differentiate the structural features of

estrogens responsible for ligand binding to ER-a and

ER-b. In the CoMFA contour maps (Fig. 2), the

green/yellow polyhedra denote regions around the

ligands where an increase in steric bulk is favorable/

unfavorable for binding, and the red/blue polyhedra

denote regions in which negative/positive electro-

static potential is preferred for enhanced binding.

Comparison of the respective CoMFA contour plots

between ER-a and ER-b revealed only subtle

differences at the 7a position (Fig. 3) that nevertheless

may be biologically relevant.

Several contour maps are reported in the literature

from CoMFA studies on a number of datasets,

including 58 structurally diverse ER ligands by

Waller et al. [30], 42 steroidal congeners by Wiese

et al. [31], 30 DES derivatives by Sadler et al. [68], 71

halogenated estradiol derivatives by Gantchev [69],

and 130 structurally diverse ligands by Shi et al. [43].

These maps consistently indicated that negative

charge around the 3-OH and 17b-OH of estradiol

favored binding. These findings are consistent with

historical observations as well as studies on the ER

crystal structure [12] showing that the 3 and 17b-OH

positions of estradiol are critical for high-affinity ER

binding. The CoMFA contour provided by Gantchev

[69] also showed that some small sterically bulky

groups (e.g. CH3) at the 17a, 7a and 11b positions are

tolerated, in agreement with SAR results [70]. In

several CoMFA models [30,31,33], steric intolerance

in the vicinity of the steroid A-ring was interpreted to

indicate that this region of the receptor’s binding

pocket exhibits a preference for planar aromatic rings.

This explanation is consistent with both biological

activity data [70,71] and structural information [11,

12] on ER.

QSAR models developed using CoMFA are

sensitive to molecular alignment, a process which

can be somewhat arbitrary and subjective. Conse-

quently, other QSAR approaches have been evaluated

for ER binding. Tong et al. [32] investigated the utility

of structural descriptors to construct classical QSAR

models for a set of ER ligands. They found that

obtaining a statistically robust model is highly

dependent on the ability of the selected descriptors

Fig. 3. Structure of 17b-estradiol. The same atom numbering

scheme applies to other steroids mentioned in this paper.

Fig. 2. CoMFA steric and electrostatic contour plots for estrogen

binding to ER-a and ER-b. The 17b-estradiol molecule has been

inserted inside the fields as a 3D geometrical reference. Enhanced

RBA (i.e. higher-binding affinity) is associated with adding/sub-

tracting steric bulk from green/yellow regions and with adding/sub-

tracting positive electrostatic charge in the blue/red regions.
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to encode the variation in activity with chemical

structure. It is clear that more one knows at the

molecular level about the estrogenic activity of

the chemicals, the easier the task in selecting among

the wide variety and types of specific molecular

descriptors that correlate with binding [72].

For example, the crystal structure of the estradiol–

ER complex reveals that the hydroxyl group at the

three position of the phenolic A ring forms hydrogen

bonds with Glu 353, Arg 394 and a conserved water

molecule in the receptor-binding site [12], thus

stabilizing the binding conformation. Moreover, the

crystal structures of ER complexed with DES, 4-OH-

tamoxifen and raloxifene reveal this same binding

pattern [11]. These observations suggest that a

phenolic ring is likely a common structural feature

associated with tight binding to the receptor. By

including an indicator for the phenolic ring

(Fig. 4(A)), Gao et al. [73] was able to develop a

statistically valid classification model using a binary

QSAR approach. Shi et al. [43] recently combined the

same phenolic ring indicator with the standard steric–

electrostatic CoMFA descriptors for model develop-

ment. The inclusion of this indicator enhanced the

predictive ability of the model as measured by the

increase in the cross-validated r2 ðq2Þ from 0.65 to

0.71. Although the steric/electrostatic field contrib-

uted predominately to the ER binding, the 6.8%

contribution from the structural indicator confirms the

appropriateness in separately including the contri-

bution of the phenolic A ring.

Gao et al. [73] also introduced a hexestrol indicator

by recognizing that this structural common feature

was associated with the high-estrogenic activity of

DES analogues. The hexestrol indicator was used for a

binary QSAR model. In an integrated system devel-

oped by Tong and co-workers [43,74–76] for use as a

priority setting tool for EDCs, a similar structural

indicator, DES skeleton (Fig. 4(B)) was used in one of

the beginning Phases of the ‘four-phase’ model (vide

infra) as a structural alert to identify potential ER

binders [74–76].

Commercial molecular modeling programs often

feature a wide array of chemical structure descriptors

available for developing QSAR models. However, the

aforementioned examples demonstrate that inclusion

of biologically relevant descriptors (which are not

necessarily included in the commercial software)

through benefit of expert knowledge can improve

substantially the performance of the QSAR model, at

least for ER binding.

3.2. Hazard identification

This particular application has focused most

recently on development of QSAR models to predict

ER-binding affinity for prioritizing potential estro-

genic EDCs. Two QSAR-based systems, the common

reactivity pattern (COREPA) approach [77,78] and

the four-phase approach [74–76], are being evaluated

by the EPA to determine their appropriateness for

priority setting of potential EDCs.

The endocrine disruptor knowledge base (EDKB)

project team [79] at the FDA’s National Center for

Toxicological Research (NCTR) has developed an

integrated systems for priority setting of EDCs

[74–76]. The system is focused on minimizing

possible false negatives since chemicals labeled as

‘inactive’ in the process are dropped into a lower

priority category for experimental testing. For this

purpose, different computational models have been

rationally integrated into a four-phase scheme accord-

ing to the nature of each model. A progressive phase

paradigm is used as a screen to reduce the number of

chemicals to be considered in the subsequent phase.

Therefore, these four phases work in a hierarchical

way to incrementally reduce the size of a dataset with

increasing precision of prediction. Within each phase,

different models have been selected to work com-

plementarily in representing key activity-determining

structure features to minimize the rate of false

negatives. For predicting ER-binding affinity, the

models comprised of the four phases following:

† Phase I: Filtering—Two rejection filters, molecu-

lar weight ,94 or .1000 and no-ring structure,

were used to significantly and with high confidence

Fig. 4. Depiction of structural indicators deemed important for ER

binding: (A) phenolic ring; (B) DES skeleton.
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eliminate those chemicals extremely unlikely to

bind ER [76]. These two filters were validated on

,2000 chemicals whose ER activities were

available from the literature.

† Phase II: Active/inactive assignment—The chemi-

cals passing through Phase I were assigned as YES/

NO for ER binding using three different methods,

i.e. structural alerts, pharmacophore searching, and

classification models. While structural alerts ident-

ify key 2D structural features associated with ER

binding, pharmacophore search identifies 3D sub-

structure important for ER binding. Classification

models use pattern recognition to qualitatively

categorize chemicals into active and inactive

subsets on the basis of their similarity in physico-

chemical properties. In its current form, this Phase

employs in parallel 11 models, three structural

alerts, seven pharmacophores and one classifi-

cation model to discriminate active from inactive

chemicals. A chemical predicted to be active by

any of these models is subsequently evaluated in

the Phase III, while others are eliminated. Since

each method incorporates and weighs differently

the various structural features that endow a

chemical with the ability to bind the ER, the

combined outputs derived from the three

approaches are complementary in minimizing

false negatives. Moreover, combining the outputs

of these 11 models provides a rational means to

rank order the chemicals in decreasing order of

potential activity [76].

† Phase III: Quantitative predictions—In this phase,

a CoMFA model is used to make a more accurate

quantitative activity prediction for chemicals from

Phase II. Chemicals with higher predicted binding

affinity are given higher priority for further

evaluation in Phase IV. The CoMFA model

demonstrated good statistical reliability using

both internal and external validation [43].

† Phase IV: Rule-based decision-making system—In

this final stage of the integrated priority setting

approach, a rule-based (or knowledge-based)

decision-making system is employed to foster

definitive decision making. The system would be

useful only after incorporating accumulated human

knowledge and expertise (i.e. rules). Nonetheless,

combining information from Phases II and III with

other sources, such as production volume,

environmental fate and so forth should provide

sufficient information to make a final decision on

priority setting.

This approach has been validated by a number of

existing datasets, including the NCTR ER-binding

dataset [80], the E-SCREEN assay data [81], the yeast

two-hybrid reporter gene assay data [82], and other

datasets [30,83– 87]. Thus far, the system has

produced no false negatives as would be critical in

priority setting for regulatory purpose. When the

Phase I and II protocols were applied to 58,000

chemicals recognized by EPA as a representative

subset of the 80,000 chemicals, some 9100 chemicals

were identified as potential estrogens of which some

3600 have activity no less than 105-fold below 17b-

estradiol. Therefore, the method dramatically reduced

the number of potential estrogens by some 83% and

with a low rate of false negatives as required. The

same integrated scheme is being extended to include

endpoints of other endocrine disrupting mechanisms

(e.g. AR binding).

COREPA is a unique SAR approach designed to

analyze ‘reactivity patterns’ of structurally diverse but

biologically similar chemicals [88]. COREPAs rep-

resent a set of the specific ranges of structural

descriptors determined with the biological activity

of concern. Constructing a SAR model using

COREPA consisted of the following steps: (1)

multiple conformers within 20 kcal/mol of the lowest

energy structure are generated for each chemicals in a

dataset; (2) a set of descriptors are calculated for each

conformer of each chemical, thus the discrete

distribution of the descriptor across the conformers

is obtained for each chemical; (3) specify a cutoff to

separate a dataset into two groups, active and inactive;

(4) a set of parameters are determined by evaluating

the degree of overlap between the distribution

associated with active and inactive groups, which

provided the maximum measure of similarity within

groups and least overlap between groups; (5) the

cutoff-dependent common reactive patterns are

obtained as products of the probabilistic distributions

for specific parameters associated with active or

inactive chemicals; (6) a decision tree based on these

parameters is established to construct an SAR model;

(7) a cutoff is re-specified to separate the dataset, and

steps 4–7 are repeated.
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The COREPA models based on 26 steroids and 19

non-steroids [89,90] were recently reported for ER

relative-binding affinity (RBA) by selecting cutoff of

.150, 100–10, 10–1, and 1–0.1% [78,91]. How-

ever, no internal or external validation was performed

in the study.

4. Models for other nuclear receptor superfamily

Second to ER in the number of published QSAR

studies are the PR [42,92–94] and the AR [29,93].

Not many QSAR models have been developed for

corticosteroids [95– 97], retinoid acid [98] and

thyroids [99]. This is mainly due to the limited

amount of biological data for these receptors.

An AR CoMFA model reported by Waller et al.

[29] was based on 28 structurally diverse natural,

synthetic, and environmental chemicals, of which 21

were used as a training set and seven as a test set. The

ability of the model to accurately predict-binding

affinity of the testset molecules was demonstrated in

the study.

A comparison of PR and AR binding using the

CoMFA technique was reported by Loughney [93].

The contour map indicates that sensitivity to steric

bulk in the region of the steroid A ring is greater for

PR than for AR. This is consistent with the knowledge

that a large class of the anti-androgens [100] have an

electron withdrawing substituent in the A ring.

Furthermore, the steric contour for the PR model

indicates tolerance for steric bulk in the region of the

17a position whereas, in contrast, binding affinity is

decreased in the AR model. This is consistent with the

rational design of orally active analogues of pro-

gesterone by adding substituents to the 17a position.

Chemicals, such as norethindrone (norethisterone)

and (levo)norgetrel have lower AR-binding affinity

but higher PR-binding activity.

In an early study, Ojasoo et al. [101] compared 3D

structures of AR with PR where both receptor

structures were derived from homology modeling.

They found that empty space is present in both

receptors around the 3-keto, 11b, 7a positions, and

C21 positions for PR. The crystal structures for both

AR [15] and PR [10] are now available. Comparison

of the LBDs between AR and PR should allow us to

better understand structural requirements for both

receptors.

So et al. reported [42] QSAR studies on PR binding

by using several variable selection approaches,

including forwarding stepping regression (FSR),

GFA, generalized simulated annealing (GSA), and

genetic neural network (GNN). A comparison of the

predictive qualities for both training and test chemi-

cals demonstrated that the GNN protocol achieved the

best results.

An excellent review paper on PR QSAR and SAR

models is reported by Bursi [92]. Thus, this topic will

not be discussed further.

5. Compilation of standard biological datasets

on NRs for developing statistically valid

QSAR models

Many QSAR approaches have been developed in

the field of drug discovery. The methods of choice are

dependent on a number of factors. Comparison of

these approaches by use of the same dataset permits

evaluation of the quality of a method relative to other

methods. The developers of the CoMFA technique,

first introduced in 1988 [35], selected a dataset

composed of 31 steroids with binding affinity for

corticosteroid-binding globulins to introduce and

validate the method. This dataset was divided into a

training and test sets of 21 and 10 steroids,

respectively. A variety of new QSAR methods were

evaluated using this dataset to compare their per-

formance with CoMFA, including SOMFA [102],

CoMMA [103,104], CoMSIA [105,106], COMPASS

[107], molecular similarity matrices [102], MS-

WHIM [108], MEDV-13 [109], etc. [110–119].

Consequently, and inadvertently, this steroid dataset

has become the de facto benchmark for assessing a

QSARs acceptability compared with CoMFA as

reviewed by Coats [120].

Evaluation of new methods based on this particular

dataset has certain limitations, specifically for appli-

cation in the NRs. One of the major concerns is that

the dataset contains only 21 steroidal congeners with

an activity range of less than three orders of

magnitude. Such QSAR models, which explore only

a small portion of chemical-structure and biological-

activity space, fail to predict activity even for
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chemicals that differ only slightly in structure from

the training set. Additionally, the structures of eight

chemicals were drawn incorrectly in the original

publication [115,120], and the activities for seven

inactive chemicals ðKi , 1 £ 105 M21Þ were arbitra-

rily assigned a specific value ðpKi ¼ 25:0Þ: These

assumptions, uncertainties, and errors would argue

against using this steroid dataset as a standard for

developing, validating, or comparing various QSAR

models.

Recently, the EDKB team at the US FDA’s NCTR

has reported a more adequate dataset to validate

QSAR methods, particularly for use in the NRs

[70,80]. They validated a rat ER-binding assay and

measured the binding affinity for over 230 chemicals

for use in QSAR model development. This ‘NCTR

dataset’ contains chemicals that were selected to

cover the structural diversity of chemicals that bind to

ER with an activity distribution ranging over six

orders of magnitude, which is an essential require-

ment for a robust predictive model applicable to

structurally diverse estrogens (Fig. 5). The chemical

selection process was highly interdisciplinary, invol-

ving computational chemists, biologists and exper-

imental toxicologists, and has resulted in steady

improvement in performance of the QSAR models

[79]. In terms of experimental quality, number of

chemicals, activity range and structural diversity, the

NCTR dataset represents the most reliable and self-

consistent dataset currently available on estrogens to

build QSAR models. The NCTR dataset has been used

recently to compare the performance of HQSAR to

CoMFA [43,70]. Along with the NCTR dataset, the

Waller [121] and Kuiper [89] datasets were used as

the testsets for external validation. This study

demonstrated that these three datasets are superior to

the earlier small datasets [34] for evaluating the

relative strengths and weaknesses of CoMFA versus

HQSAR.

6. Concluding remarks

It is clear that significant progress has been made in

developing and validating QSAR models for the

prediction of binding affinity for the NRs. The NRs

have become the subject of numerous studies, not

only for medicinal chemists and toxicologists but also

for computational chemists, crystallographers, and

statisticians. These models help us to understand the

mechanisms in receptor binding, to predict binding

affinity for environmental and other chemicals as tools

for government regulation control, and to identify

leads in drug discovery. The recent growth of lab-on-

chip (i.e. microarray and protein array) technology

[122–124] and advanced recombinant DNA technol-

ogies (cDNA cloning, Southern blotting, PCR, etc.)

have in the last decade enabled rapid identification of

macromolecules as well as their expression at

sufficient purity and quantities adequate for structure

determination. This dramatic increase in the avail-

ability of 3D structures for many receptors has greatly

expanded the list of potential drug targets, and also

provides a rich source of data for QSAR and related

Fig. 5. The distribution of (A) binding activity and (B) chemical classes for the NCTR dataset. The activity is represented as RBA. The RBA for

the endogenous ligand, 17b-estradiol, was set to 100.
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computational techniques [125,126]. By combining

ligand- and structure-based approaches in QSAR,

accurate and biologically meaningful models should

be possible for the receptor-mediated effects.
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